

Pergamon

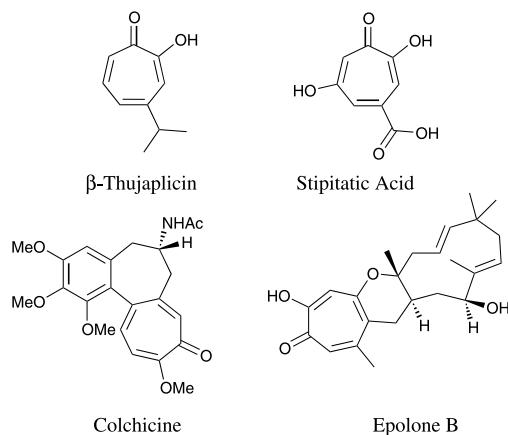
SCIENCE @ DIRECT[®]

Tetrahedron Letters 44 (2003) 4543–4545

TETRAHEDRON
LETTERS

Expedient synthesis of a highly substituted tropolone via a 3-oxidopyrylium [5+2] cycloaddition reaction

Jack E. Baldwin,^{a,*} Alexander V. W. Mayweg,^a Gareth J. Pritchard^b and Robert M. Adlington^a


^aThe Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, UK

^bDepartment of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

Received 3 March 2003; revised 7 April 2003; accepted 17 April 2003

Abstract—An expedient ten-step synthesis of a substituted tropolone is described. The synthesis involves a 3-oxidopyrylium [5+2] cycloaddition reaction with acrylonitrile as the key step, affording a highly functionalized [3.2.1]-bicycle **10** as a single regioisomer. The nitrile substituent of the reduced cycloadduct **12** permits efficient ether-bridge cleavage and tropolone **15** is obtained after a final bis-oxidation procedure. The pyranulose acetate cycloaddition precursor was derived from 3-methyl-2-furoate. © 2003 Elsevier Science Ltd. All rights reserved.

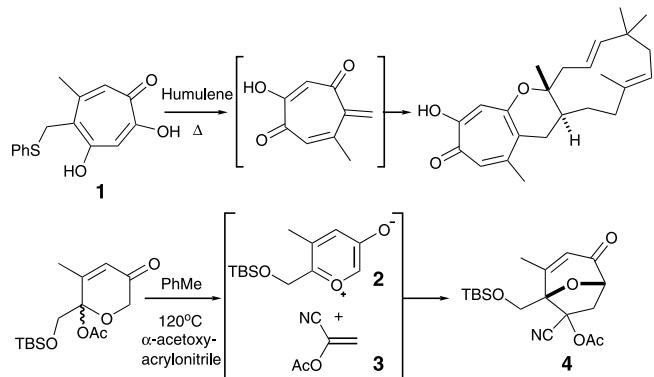
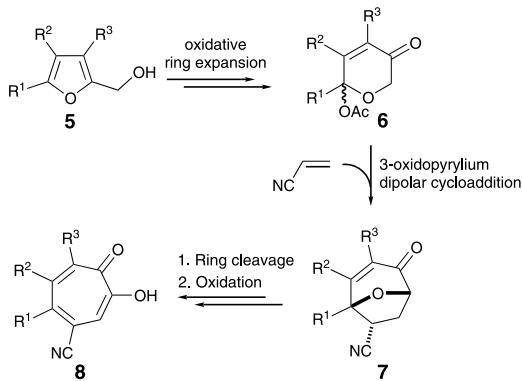

Since their discovery, tropolone natural products and synthetic tropolone derivatives have attracted considerable interest due to the unique structure and properties of the tropolone ring (Fig. 1).¹ Numerous tropolone natural products and several synthetic tropolone compounds have shown a range of potent biological activities.² Tropolones are also being actively studied in the field of liquid crystal research.³

Figure 1.

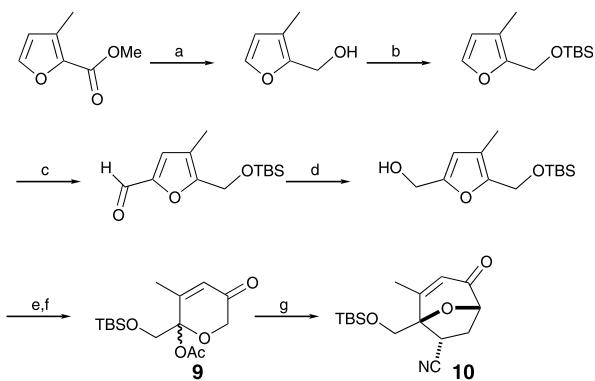
Despite featuring only seven ring carbon atoms and no stereocentres, the synthesis of substituted tropolones

continues to be a considerable synthetic challenge. A recent renewed interest in the ability of colchicine to inhibit tubulin polymerisation has been complemented by elegant new approaches to tropolone structures.⁴ We recently disclosed a biomimetic cycloaddition approach to novel tropolone natural products via a tropolone quinone methide derived from a substituted tropolone derivative **1** (Scheme 1).^{5,6}



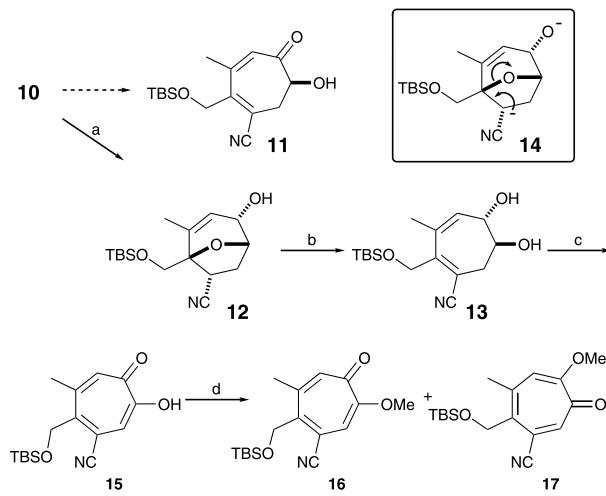
Scheme 1.

Tropolone **1** was derived from cycloadduct **4** which in turn was obtained via a 1,3-dipolar cycloaddition reaction of 3-oxidopyrylium species **2** with ketene equivalent **3**. This [5+2] cycloaddition is a well precedented strategy for the rapid access of functionalized seven-membered ring structures, however until our recent disclosure it had not been applied to tropolone synthe-


* Corresponding author. Tel.: +44-1865-275-670; fax: +44-1865-275-632; e-mail: jack.baldwin@chem.ox.ac.uk

sis.⁷ We envisaged that by using this strategy, other substituted tropolones, such as nitrile tropolone **8**, could be accessed (Scheme 2). A suitably substituted furan methanol derivate **5** could be converted into the pyranulose acetate **6** via an oxidative ring expansion (Scheme 2). Thermolysis of **6** in the presence of an acrylonitrile would afford the cycloadduct **7**, which could be transformed into tropolone **8** via ether-bridge cleavage and subsequent oxidation. We herein report the first example of a rapid synthesis of a novel substituted cyanotropolone using this cycloaddition approach.

Scheme 2. General strategy for the synthesis of nitrile tropolones.


The 3-oxidopyrylium precursor **9**, which also served as a precursor to tropolone **1**, was thus derived in six steps from commercially available 3-methyl-2-furoate in excellent overall yield (Scheme 3).

Scheme 3. Reagents and conditions: (a) LiAlH₄, THF, Et₂O, rt, 99%; (b) TBS-Cl, imidazole, DMF, rt, 90%; (c) *n*-BuLi, DMF, THF, -78°C to rt, 93%; (d) NaBH₄, EtOH/THF, rt, 1 h, 98%; (e) *m*-CPBA, DCM, -78°C, 3 h, 97%; (f) Ac₂O, DMAP, pyridine, 0°C, 90 min, 65%; (g) acrylonitrile (15 equiv.), toluene, 120°C, 6 h, 42%.

Heating pyranulose acetate **9** in toluene in the presence of acrylonitrile afforded cycloadduct **10** with complete regio- and *endo*-selectivity (as determined by NMR).⁸ The moderate yield of this reaction is balanced by the high atom economy of this approach for the construc-

tion of the seven-membered ring system. With cycloadduct **10** in hand, the cleavage of the ether-bridge was investigated. In our previously disclosed tropolone synthesis, the ring cleavage of a related cycloadduct was achieved by an iodo-ether elimination that required several steps. For cycloadduct **10** we hoped to take advantage of the proximate nitrile group for the desired ether-bridge cleavage. Cycloadduct **10** was therefore treated with LDA (1–4 equiv.) in THF at -78°C and then warmed to ambient temperature, however no ring cleaved product **11** was isolated. In sharp contrast, allylic alcohol **12** underwent efficient ring cleavage.^{9,10} Treating alcohol **12** with 2 equiv. of LDA in THF at -78°C and warming the reaction to ambient temperature afforded the desired ring-cleaved product **13** in good yield. The ability of **12** to undergo ring cleavage may be due to the instability of the di-anion **14** that is formed upon the addition of 2 equiv. of base. Finally, diol **13** was oxidised to the desired tropolone oxidation level in one step using the TFAA activated DMSO reagent followed by the addition of triethylamine and afforded tropolone **15** as a yellow solid in good purity (Scheme 4).

Scheme 4. Reagents and conditions: (a) NaBH₄, CeCl₃·7H₂O, MeOH, 96%; (b) LDA (2 equiv.), THF, -78°C to rt, 68%; (c) DMSO (6 equiv.), TFAA (5 equiv.), -60°C, 1.5 h, then Et₃N (10 equiv.), 1.5 h; (d) CH₂N₂, THF, 2 h, 0°C, 70% over two steps.

Alternative oxidation procedures involving stepwise or slow oxidation procedures afforded none of the desired tropolone and led to intractable mixtures of products.¹¹ As with other tropolones synthesised within our laboratories, tropolone **15** could not be efficiently purified by silica gel chromatography. For full characterization and assignment, tropolone **15** was treated with diazomethane to afford the two expected regioisomers **16** and **17** as a 1:1 mixture in 70% yield.¹² Spectroscopic analysis showed that both tropolones featured the deshielded C–H resonances and IR stretches characteristic for the tropolone ring. The structures of isomers **16** and **17** were then fully assigned using 2D HSQC/HMBC NMR spectroscopy.

In conclusion, we have developed an efficient synthesis of novel highly substituted cyano-tropolones utilising a 3-oxidopyrylium [5+2] dipolar cycloaddition strategy. The incorporated nitrile substituent functions as an excellent handle for the cleavage of the ether-bridge. The cyano-tropolone is accessed in ten steps from a commercially available furan, which can be easily functionalized. The strategy and methodology developed thus opens the possibility of incorporating a large variety of substituents into the tropolone core.

Acknowledgements

The authors thank the EPSRC for a studentship to A.V.W.M.

References

- (a) Nozoe, T. In *Non-Benzenoid Aromatic Chemistry*; Ginsburg, D., Ed.; Interscience: New York, 1959; p. 347; (b) Pietra, F. *Chem. Rev.* **1973**, *73*, 293; (c) Pietra, F. *Acc. Chem. Res.* **1979**, *12*, 132.
- (a) Lange, U.; Schumann, C.; Schmidt, K. L. *Eur. J. Med. Res.* **2001**, *6*, 150; (b) Cai, P.; Smith, D.; Cunningham, B.; Brown-Shimer, S.; Katz, B.; Pearce, C.; Venables, D.; Houck, D. *J. Nat. Prod.* **1998**, *61*, 791; (c) Harris, G. H.; Hoogsteen, K.; Silverman, K. C.; Raghobar, S. L.; Bills, G. F.; Lingham, R. B.; Smith, J. L.; Dougherty, H. W.; Cascales, C.; Paláez, F. *Tetrahedron* **1993**, *49*, 2139; (d) Mayerl, F.; Gao, Q.; Huang, S.; Klohr, S. E.; Matson, J. A.; Gustavson, D. R.; Pirnik, D. M.; Berry, R. L.; Fairchild, C.; Rose, W. C. *J. Antibiot.* **1993**, *46*, 1082; (e) Miyamoto, D.; Kusagaya, Y.; Endo, N.; Sometani, A.; Takeo, S.; Suzuki, T.; Arima, Y.; Nakajima, K.; Suzuki, Y. *Antiviral Res.* **1998**, *39*, 89; (f) Matsumura, E.; Morita, Y.; Date, T.; Tsujibo, H.; Yasuda, M.; Okabe, T.; Ishida, N.; Inamori, Y. *Biol. Pharm. Bull.* **2001**, *24*, 299; (g) Yamato, M.; Ando, J.; Sakai, J.; Hashigaki, K.; Wataya, Y.; Tsukagoshi, S.; Tashiro, T.; Tsuruo, T. *J. Med. Chem.* **1992**, *35*, 267.
- Hashimoto, M.; Ujiie, S.; Mori, A. *Chem. Lett.* **2000**, 758.
- For recent work on colchicine analogues, see: (a) Lee, K.-H. *Med. Res. Rev.* **1999**, *19*, 569; For recent tropolone syntheses, see: (b) Banwell, M. G. *Pure Appl. Chem.* **1996**, *68*, 539; (c) Banwell, M. G.; Onrust, R. *Tetrahedron Lett.* **1985**, *52*, 4851; (d) Banwell, M. G.; Lambert, J. N.; Gravatt, G. L. *J. Chem. Soc., Perkin Trans. 1* **1993**, 2817; (e) Lee, J. C.; Cho, S. Y.; Cha, J. K. *Tetrahedron Lett.* **1999**, *40*, 7675; (f) Soungh, M.-G.; Matsui, M.; Kitahara, T. *Tetrahedron* **2000**, *56*, 7741; (g) Lee, J. C.; Jin, S.-J.; Cha, J. K. *J. Org. Chem.* **1998**, *63*, 2804; (h) Boger, D. L.; Ichikawa, S.; Jiang, H. *J. Am. Chem. Soc.* **2000**, *122*, 12169.
- Baldwin, J. E.; Mayweg, A. V. W.; Neumann, K.; Pritchard, G. *J. Org. Lett.* **1999**, *1*, 1933.
- Adlington, R. M.; Baldwin, J. E.; Mayweg, A. V. W.; Pritchard, G. *J. Org. Lett.* **2002**, *4*, 3009.
- For further examples of 1,3-dipolar cycloadditions with 3-oxidopyrylium species, see: (a) Hendrickson, J. B.; Farina, J. S. *J. Org. Chem.* **1980**, *45*, 3359; (b) Hendrickson, J. B.; Farina, J. S. *J. Org. Chem.* **1980**, *45*, 3361; (c) Sammes, P. G.; Street, L. J. *J. Chem. Soc., Perkin Trans. 1* **1983**, 1261; (d) Sammes, P. G.; Street, L. J. *J. Chem. Soc., Chem. Commun.* **1983**, 666; (e) Sammes, P. G.; Street, L. J. *J. Chem. Res.* **1984**, 196; (f) Bromidge, S. M.; Sammes, P. G.; Street, L. J. *J. Chem. Soc., Perkin Trans. 1* **1985**, 1725; (g) Sammes, P. G.; Street, L. J. *J. Chem. Soc., Perkin Trans. 1* **1986**, 281; (h) Bromidge, S. M.; Archer, D. A.; Sammes, P. G. *J. Chem. Soc., Perkin Trans. 1* **1990**, 353; (i) Marshall, K. A.; Mapp, A. K.; Heathcock, C. H. *J. Org. Chem.* **1996**, *61*, 9135; (j) Wender, P. A.; Lee, H. Y.; Wilhelm, R. S.; Williams, P. D. *J. Am. Chem. Soc.* **1989**, *111*, 8954; (k) Magnus, P.; Diorazio, L.; Donohoe, T. J.; Giles, M.; Pye, P.; Tarrant, J.; Thom, S. *Tetrahedron* **1996**, *52*, 14147.
- Spectroscopic data for 10:* (colourless crystals) mp 84–85°C; IR ν_{max} (KBr)/cm⁻¹ 2941m, 2239w, 1686s, 1465m, 1436w, 1248s, 1119s, 1003m, 907w, 834s, 777m; δ_{H} (400 MHz, CDCl₃) 0.10 (6H, s), 0.91 (9H, s), 2.04 (1H, ddd, J =13.5, 5.5, 1.5 Hz), 2.22 (3H, d, J =1.5 Hz), 2.82 (1H, ddd, J =13.5, 10.5, 8.5 Hz), 3.25 (1H, dd, J =5.5, 10.5 Hz), 3.96 (1H, d, J =11.5 Hz), 4.04 (1H, d, J =11.5 Hz), 4.59 (1H, apt. dt, J =8.5, 1.5 Hz), 6.03 (m, 1H); δ_{C} (100 MHz, CDCl₃) -5.57, -5.53, 18.17, 20.79, 25.67, 31.71, 32.47, 63.49, 80.96, 85.91, 118.40, 126.33, 162.17, 195.02; MS (CI, NH₄⁺) 325 ([M+NH₄]⁺, 100%), 308 ([M+H]⁺, 55%) 250 (80%); MS (APCI⁺) 255 (-H₂C=CHCN); HRMS found 308.1693; C₁₆H₂₆NO₃Si requires 308.1681.
- A closely related cleavage of an oxy-bridge beta to a nitrile function in a [3.2.1] bicyclic was previously reported. See: Marshall, K. A.; Mapp, A. K.; Heathcock, C. H. *J. Org. Chem.* **1996**, *61*, 9135.
- The stereochemistry of **12** was assigned using NOE NMR spectroscopy.
- Oxidation procedures attempted include: MnO₂, IBX, PDC, PCC.
- Spectroscopic data for 16:* IR ν_{max} (KBr)/cm⁻¹ 2930w, 2847w, 2218w, 1610s, 1592s, 1573s, 1462w, 1425w, 1388w, 1300m, 1245s, 1184m, 1129m, 1065s, 968w, 894w, 834s, 769m, 704w; δ_{H} (400 MHz, CDCl₃) 0.16 (6H, s), 0.92 (9H, s), 2.53 (3H, s), 3.96 (3H, s), 4.86 (2H, s), 6.61 (1H, s), 7.30 (1H, s); δ_{C} (125 MHz, CDCl₃) -4.89, 18.71, 25.31, 26.19, 57.09, 65.94, 111.30, 116.31, 119.66, 141.40, 146.43, 147.20, 163.41, 179.14; *m/z* (APCI⁺) 320 (MH⁺, 50%); HRMS (CI⁺) found [MH]⁺ 320.1675; C₁₇H₂₆NO₃Si requires 320.1682.
- Data for 17:* IR ν_{max} (KBr)/cm⁻¹ 2953m, 2851w, 2213w, 1616s, 1587m, 1469m, 1431w, 1399w, 1381w, 1293s, 1251s, 1186w, 1154w, 1122w, 1048s, 965m, 914w, 844s, 771s; δ_{H} (500 MHz, CDCl₃) 0.17 (6H, s), 0.93 (9H, s), 2.59 (3H, s), 3.98 (3H, s), 4.80 (2H, s), 6.73 (1H, s), 7.50 (1H, s); δ_{C} (125 MHz, CDCl₃) -6.22, 18.24, 25.67, 25.75, 56.35, 64.00, 118.35, 124.53, 134.58, 134.59, 140.15, 145.65, 163.79, 172.12; *m/z* (APCI⁺) 320 (MH⁺, 45%); 188 ([M-TBSO]⁺, 100%); HRMS (CI⁺) found [MH]⁺ 320.1671; C₁₇H₂₆NO₃Si requires 320.1682.